Because of what happened at Brown Ferry, fire suppression is a separate group of personnel at every nuclear facility trained for only that one thing! Yes it costs a lot of money, but it costs a lot more to be shut down even for a short period of time. In addition, this fire caused the NRC to set tight standards for fire control that are still in effect to this day. Also, all nuclear plants now have the capability to totally shut down from outside the control room. Thus, they must have the equivalent of a battle bridge in the ST: TNG tv series.
Another interesting trivia fact about the Brown Ferry facility, specifically unit 2, is outlined in this Wikepdia entry:
Previously:
The Fermi Chronicles - Part 19: Nuclear Events - Fermi 1, 1966
The Fermi Chronicles - Part 18: Nuclear Events - SL-1 Event, Idaho, 1961
The Fermi Chronicles - Part 17: Nuclear Events - Windscale, UK, 1957
The Fermi Chronicles - Part 16: Nuclear Events - Chalk River, CAN, 1952
The Fermi Chronicles - Part 15: The Nuclear Business Model
The Fermi Chronicles - Part 14: Neutron Moderation
The Fermi Chronicles - Part 13: Nuclear Reactor Types
The Fermi Chronicles - Part 12: Generating Electricity
The Fermi Chronicles - Part 11: Worldwide Uranium Availability
The Fermi Chronicles - Part 10: Utilizing Nuclear Reactions To "Breed" More Fuel
The Fermi Chronicles - Part 9: Nuclear Fission
The Fermi Chronicles - Part 8: Neutron Interaction
The Fermi Chronicles - Part 7: Radioactive Decay and Half-Life
The Fermi Chronicles - Part 6: Atomic Structures
The Fermi Chronicles - Part 5: Nuclear Waste Storage
The Fermi Chronicles - Part 4: Radiation Types and Radiation "Dose"
The Fermi Chronicles - Part 3: Radiation Types
The Fermi Chronicles - Part 2: A week of training
The Fermi Chronicles - Part 1: The alpha post
Beginning in 2005 Unit 2 was loaded with BLEU (Blended Low Enriched Uranium) recovered by the DOE from weapons programs. This fuel contains quantities of U-236 and other contaminants because it was made from reprocessed fuel from weapons program reactors and therefore has slightly different characteristics when used in a reactor as compared to fresh uranium fuel. By making use of this fuel which would otherwise have been disposed of as waste the TVA is saving millions of dollars in fuel costs and accumulating a database recycled uranium reactions in LWR use.I don't know how successful it was, but the result may be the recycling of nuclear waste already in storage at every nuclear facility. I have touched on this in Part 5 below.
Previously:
The Fermi Chronicles - Part 19: Nuclear Events - Fermi 1, 1966
The Fermi Chronicles - Part 18: Nuclear Events - SL-1 Event, Idaho, 1961
The Fermi Chronicles - Part 17: Nuclear Events - Windscale, UK, 1957
The Fermi Chronicles - Part 16: Nuclear Events - Chalk River, CAN, 1952
The Fermi Chronicles - Part 15: The Nuclear Business Model
The Fermi Chronicles - Part 14: Neutron Moderation
The Fermi Chronicles - Part 13: Nuclear Reactor Types
The Fermi Chronicles - Part 12: Generating Electricity
The Fermi Chronicles - Part 11: Worldwide Uranium Availability
The Fermi Chronicles - Part 10: Utilizing Nuclear Reactions To "Breed" More Fuel
The Fermi Chronicles - Part 9: Nuclear Fission
The Fermi Chronicles - Part 8: Neutron Interaction
The Fermi Chronicles - Part 7: Radioactive Decay and Half-Life
The Fermi Chronicles - Part 6: Atomic Structures
The Fermi Chronicles - Part 5: Nuclear Waste Storage
The Fermi Chronicles - Part 4: Radiation Types and Radiation "Dose"
The Fermi Chronicles - Part 3: Radiation Types
The Fermi Chronicles - Part 2: A week of training
The Fermi Chronicles - Part 1: The alpha post
No comments:
Post a Comment